3.174 \(\int \sqrt{\sec (c+d x)} (a+a \sec (c+d x))^2 \, dx\)

Optimal. Leaf size=131 \[ \frac{8 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a^2 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{4 a^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}-\frac{4 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

[Out]

(-4*a^2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (4*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*a^2*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.101867, antiderivative size = 131, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3788, 3768, 3771, 2639, 4046, 2641} \[ \frac{2 a^2 \sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{4 a^2 \sin (c+d x) \sqrt{\sec (c+d x)}}{d}+\frac{8 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}-\frac{4 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2,x]

[Out]

(-4*a^2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (8*a^2*Sqrt[Cos[c + d*x]]*Ellipti
cF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (4*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d + (2*a^2*Sec[c + d*x]
^(3/2)*Sin[c + d*x])/(3*d)

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{\sec (c+d x)} (a+a \sec (c+d x))^2 \, dx &=\left (2 a^2\right ) \int \sec ^{\frac{3}{2}}(c+d x) \, dx+\int \sqrt{\sec (c+d x)} \left (a^2+a^2 \sec ^2(c+d x)\right ) \, dx\\ &=\frac{4 a^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^2 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{1}{3} \left (4 a^2\right ) \int \sqrt{\sec (c+d x)} \, dx-\left (2 a^2\right ) \int \frac{1}{\sqrt{\sec (c+d x)}} \, dx\\ &=\frac{4 a^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^2 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}+\frac{1}{3} \left (4 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx-\left (2 a^2 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{4 a^2 \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{d}+\frac{8 a^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{3 d}+\frac{4 a^2 \sqrt{\sec (c+d x)} \sin (c+d x)}{d}+\frac{2 a^2 \sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 1.58764, size = 264, normalized size = 2.02 \[ \frac{1}{3} a^2 \sec ^4\left (\frac{1}{2} (c+d x)\right ) (\sec (c+d x)+1)^2 \left (\frac{\tan (c+d x)+6 \csc (c) \cos (d x)}{2 d \sec ^{\frac{3}{2}}(c+d x)}-\frac{i \sqrt{2} e^{-i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \cos ^2(c+d x) \left (3 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+2 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+3 \left (1+e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2,x]

[Out]

(a^2*Sec[(c + d*x)/2]^4*(1 + Sec[c + d*x])^2*(((-I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Co
s[c + d*x]^2*(3*(1 + E^((2*I)*(c + d*x))) + 3*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2
F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 2*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*
Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + (6*Cos[d*x]*
Csc[c] + Tan[c + d*x])/(2*d*Sec[c + d*x]^(3/2))))/3

________________________________________________________________________________________

Maple [B]  time = 2.417, size = 371, normalized size = 2.8 \begin{align*}{\frac{4\,{a}^{2}}{3\,d}\sqrt{- \left ( -2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+6\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-12\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -2\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-3\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+7\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) \sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}-4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x)

[Out]

4/3*a^2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(4*sin(1/2*d*x+1/2*c)^4-4*sin(1/2*d*x+1/2*c)
^2+1)/sin(1/2*d*x+1/2*c)^3*(4*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2+6*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-2*EllipticF(c
os(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-3*EllipticE(cos(1/2*d
*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)+7*sin(1/2*d*x+1/2*c)^2*cos(1/
2*d*x+1/2*c))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} \sec \left (d x + c\right ) + a^{2}\right )} \sqrt{\sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((a^2*sec(d*x + c)^2 + 2*a^2*sec(d*x + c) + a^2)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)*(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt{\sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2*sqrt(sec(d*x + c)), x)